On Linear Polygon Transformations

نویسنده

  • JESSE DOUGLAS
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Polygons to Ultradiscrete Painlevé Equations

The rays of tropical genus one curves are constrained in a way that defines a bounded polygon. When we relax this constraint, the resulting curves do not close, giving rise to a system of spiraling polygons. The piecewise linear transformations that preserve the forms of those rays form tropical rational presentations of groups of affine Weyl type. We present a selection of spiraling polygons w...

متن کامل

On p-semilinear transformations

In this paper, we introduce $p$-semilinear transformations for linear algebras over a field ${bf F}$ of positive characteristic $p$, discuss initially the elementary properties of $p$-semilinear transformations, make use of it to give some characterizations of linear algebras over a field ${bf F}$ of positive characteristic $p$. Moreover, we find a one-to-one correspondence between $p$-semiline...

متن کامل

Schwarz-Christoffel transformations

It is helpful to have available systematic ways to find a variety useful conformal mappings. Our text treats one such method: bilinear transformations. Here we study a second: Schwarz-Christoffel transformations. These are discussed in many references; I recommend particularly [1], a lovely book on complex variable theory which has a decided applied slant. The Schwarz-Christoffel transformation...

متن کامل

Parameterizing N-Holed Tori

We define a parameterization for an n-holed tori based on the hyperbolic polygon. We model the domain using a manifold with 2n+ 2 charts, and linear fractional transformations for transition functions. We embed the manifold using standard spline techniques to produce a surface. CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling, Curve, Surface, Solid, and Objec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007